0=-15t^2+60t+10

Simple and best practice solution for 0=-15t^2+60t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-15t^2+60t+10 equation:


Simplifying
0 = -15t2 + 60t + 10

Reorder the terms:
0 = 10 + 60t + -15t2

Solving
0 = 10 + 60t + -15t2

Solving for variable 't'.

Combine like terms: 0 + -10 = -10
-10 + -60t + 15t2 = 10 + 60t + -15t2 + -10 + -60t + 15t2

Reorder the terms:
-10 + -60t + 15t2 = 10 + -10 + 60t + -60t + -15t2 + 15t2

Combine like terms: 10 + -10 = 0
-10 + -60t + 15t2 = 0 + 60t + -60t + -15t2 + 15t2
-10 + -60t + 15t2 = 60t + -60t + -15t2 + 15t2

Combine like terms: 60t + -60t = 0
-10 + -60t + 15t2 = 0 + -15t2 + 15t2
-10 + -60t + 15t2 = -15t2 + 15t2

Combine like terms: -15t2 + 15t2 = 0
-10 + -60t + 15t2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(-2 + -12t + 3t2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(-2 + -12t + 3t2)' equal to zero and attempt to solve: Simplifying -2 + -12t + 3t2 = 0 Solving -2 + -12t + 3t2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.6666666667 + -4t + t2 = 0 Move the constant term to the right: Add '0.6666666667' to each side of the equation. -0.6666666667 + -4t + 0.6666666667 + t2 = 0 + 0.6666666667 Reorder the terms: -0.6666666667 + 0.6666666667 + -4t + t2 = 0 + 0.6666666667 Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000 0.0000000000 + -4t + t2 = 0 + 0.6666666667 -4t + t2 = 0 + 0.6666666667 Combine like terms: 0 + 0.6666666667 = 0.6666666667 -4t + t2 = 0.6666666667 The t term is -4t. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4t + 4 + t2 = 0.6666666667 + 4 Reorder the terms: 4 + -4t + t2 = 0.6666666667 + 4 Combine like terms: 0.6666666667 + 4 = 4.6666666667 4 + -4t + t2 = 4.6666666667 Factor a perfect square on the left side: (t + -2)(t + -2) = 4.6666666667 Calculate the square root of the right side: 2.160246899 Break this problem into two subproblems by setting (t + -2) equal to 2.160246899 and -2.160246899.

Subproblem 1

t + -2 = 2.160246899 Simplifying t + -2 = 2.160246899 Reorder the terms: -2 + t = 2.160246899 Solving -2 + t = 2.160246899 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + t = 2.160246899 + 2 Combine like terms: -2 + 2 = 0 0 + t = 2.160246899 + 2 t = 2.160246899 + 2 Combine like terms: 2.160246899 + 2 = 4.160246899 t = 4.160246899 Simplifying t = 4.160246899

Subproblem 2

t + -2 = -2.160246899 Simplifying t + -2 = -2.160246899 Reorder the terms: -2 + t = -2.160246899 Solving -2 + t = -2.160246899 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + t = -2.160246899 + 2 Combine like terms: -2 + 2 = 0 0 + t = -2.160246899 + 2 t = -2.160246899 + 2 Combine like terms: -2.160246899 + 2 = -0.160246899 t = -0.160246899 Simplifying t = -0.160246899

Solution

The solution to the problem is based on the solutions from the subproblems. t = {4.160246899, -0.160246899}

Solution

t = {4.160246899, -0.160246899}

See similar equations:

| 5y=15/5-20/5 | | (16/x)+2=4 | | (x/3)-2=5 | | 5x-86=34-7x | | log(x)=.65 | | (x/6)-4=-1 | | -3.2x-1.4x=63 | | (x/5)+7=10 | | 2m+4=m-6 | | 2+2(x-4)=5-3(x-3) | | 900=.39x+15y | | 1=x*ln*5x | | -3(k-2)=-2 | | k+17=13 | | f(x)=x*ln*5x | | 80+0.30x=40+0.70x | | -4x-70=-9x+20 | | 12-x=-5x+7 | | f=(-5)+-2x-1 | | 8=3r | | 7k+4=4k-10 | | -6(7x+3)=-42x-18 | | 7k+4=4-10 | | 5(h-3)=25 | | y=sqrx+13 | | -5(9-3x)=16 | | 8x+9x=10+40 | | 2(3x+4)=3(2x-1) | | N+4n=15 | | 6-.025f=f-.3 | | 2(4z-1)=3 | | 3(2x+4n)+11=-5(3-7n) |

Equations solver categories